Table 1. Critical values of the correlation coefficient, r, for different degrees of freedom (df) and probabilities. Ignore the sign (+ or -) on your calculated r in order to compare with the critical value in the table. **If your** df are not in the table, use the <u>next smaller</u> value. Critical values are within the box of double lines.

df	Probability (α or P)		
	0.05	0.01	0.001
1	0.997	1.000	1.000
2	0.950	0.990	0.999
3	0.878	0.959	0.991
4	0.811	0.917	0.974
5	0.755	0.875	0.951
6	0.707	0.834	0.925
7	0.666	0.798	0.898
8	0.632	0.765	0.872
9	0.602	0.735	0.847
10	0.576	0.708	0.823
11	0.553	0.684	0.801
12	0.532	0.661	0.780
13	0.514	0.641	0.760
14	0.497	0.623	0.742
15	0.482	0.606	0.725
16	0.468	0.590	0.708
17	0.456	0.575	0.693
18	0.444	0.561	0.679
19	0.433	0.549	0.665
20	0.423	0.457	0.652
25	0.381	0.487	0.597
30	0.349	0.449	0.554
35	0.325	0.418	0.519
40	0.304	0.393	0.490
45	0.288	0.372	0.465
50	0.273	0.354	0.443
60	0.250	0.325	0.408
70	0.232	0.302	0.380
80	0.217	0.283	0.357
90	0.205	0.267	0.338
100	0.195	0.254	0.321

Looking at the table, you should be able to answer the following questions:

- 1) As you go from higher to lower *probabilities* for a given *df*, does it become harder or easier to reject the null hypothesis for a given *r*?
- 2) As you go from lower to higher df at a given probability, does it become harder or easier to reject the null hypothesis for a given r?