

beachamam@g.cofc.edu murrenc@cofc.edu

Effects of mutation on lateral root development in Arabidopsis thaliana

Ashley M. Beacham and Courtney J. Murren Department of Biology, College of Charleston

ரது

Introduction

- T-DNA insertions on *Arabidopsis thaliana* are performed using agrobacterium with the intent to cause loss-offunction mutations in a single gene region in order to investigate gene function (O'Malley and Ecker 2010).
- Mutant lines are listed for single insertions found by the SALK institute. However, not all of these insertions are unimutant. In fact, about 50% are not (Valentine et al. 2012).
- In this experiment, the root systems of unimutant, multi-gene, and natural accession were compared both on agar and across three phosphorus environments.
- Phosphate is an immobile soil nutrient that promotes lateral root development at the expense of primary root

Sand Experiment: Methods

- Phosphorous is known to have impacts on lateral root development
- Variations in available phosphorous could highlight phenotypes.
- Eight selected lines and natural controls were grown in three

development (Williamson et al. 2001).

Questions

• Do insertions in or across multiple gene regions have more deleterious effects on plant phenotype? What are the effects of these gene regions on lateral root development?

Agar Experiment: Methods

• Six lines with insertions in or across multiple gene

- regions
- Five lines from a previous root architecture study selected for greater root length

tair

- Five randomly selected mutant lines from the same study
- Five natural accessions
- COL70000 as parental and scalar

Agar Root Analysis

Experimental Design

- Seeds placed according to randomized design
- COL70000 in the middle of each tray to act as a scalar
- Trays were cold treated for one week
- Trays were allowed to grow for two weeks in a growth chamber.

nutrient environments • Harvested at 21 days of growth Nutrient solution pipetted onto sand

Randomized design

Results

Mutant lines had fewer lateral tips than COL70000.

Low phosphorous treatments produced more tips.

for primary root size and 1-3 units for lateral root size.

COL 70000

Primary root

rating of 5

rating of 1

Lateral root

Plants were judged on a scale of 1-5 units

• Roots were scanned using an Epson

scanner and WinRHIZO.

Wutant lines demonstrated greater lateral root ratings than COL70000

line

Primary root

rating of 2

Lateral root

rating of 3

- increased and decreased comparison to COL70000.
- Multi-gene influence lines (circled in blue) showed no

• Number of tips varies by line, (F=2.24; P<0.01). COL7000 had the greatest tip number.

• Number of tips varied significantly by treatment, (F=5.19, p<0.007)

Number of tips increased with root length.

• Positive correlation between root length and tips, $(R^2=0.6945)$.

Going Forward

Rank order in lateral root production at 14 days.

- Repeat of agar experiment with fewer lines per tray to in order to do a complete WinRHIZO analysis.
- Further subdivide lines into functional categories.
- Explore potential plant position and competition effects on agar and sand.

Summary

- The Arabidopsis mutants used in this study showed greater lateral root ratings on agar, but fewer tips than natural accessions and control lines on sand.
- Multi-gene lines, noted on TDNA express to influence more than one gene, did not show a clear trend in primary or lateral root rating, and were roughly equivalent to other mutants in number of tips.
- Decreased phosphorous content of the growing medium increased the number of lateral tips developed.
- Increases in lateral root formation may have implications in nutrient uptake, competitive ability, and overall reproductive success in these mutant lines.

Citations

O'Malley R.C. and Ecker J.R., 2010. Linking genotype to phenotype using the Arabidopsis unimutant collection. The Plant Journal, 61(6): 928-940. Valentine, M.E., Wolyniak, M.J., and Rutter, M.T., 2012. Extensive Phenotypic Variation among Allelic T-DNA Inserts in Arabidopsis thaliana. PLOS One, 7(9): e44981.

Williamson et al., 2001. Phosphate Availability Regulates Root System Architecture in Arabidopsis. *Plant Physiology*, 126(2): 875-882. Acknowledgments : Special thanks to Matt Rutter, Allan Strand, Elsa Cousins, Bravada Hill, Liv Stewart, and all of the CofC unPAK team for their help.

