

Discovering deviants in UNPAK's database of mutant phenotypes

Barnard UNPAK Team, 2015-16:

ABOUT THE UNPAK PROJECT

Goals and Central Questions:

Investigating Genotype-Phenotype Relationships

UNPAK is a comprehensive effort to phenotypically characterize the extensive SALK library of knockout mutants in the model plant for genomics, Arabidopsis thaliana, emphasizing fitness-related traits and evolutionary questions:

- 1. How often and which mutations result in no change, an increase, or a decrease in fitness-related traits? This information is a significant gap in our understanding of gene and genome evolution.
- 2. Do fitness-related phenotypes associate with variation in several gene attributes? We can consider ontology, gene family size, many other attributes.
- Can we maximize undergraduate engagement in authentic genomics research? Beyond involving students in plant care and data collection, we encourage them to design experiments, manage data, conceive and execute analyses, and collaborate on communicating progress.
- 4. What is gained from such an open-ended, flexible and supportive framework? Here we present a year-long exploration of novel hypotheses focusing on UNPAK's ability to identify mutations affecting traits' developmental stability.

Additional UNPAK questions:

Identifying and interpreting KO lines with unusual trait variances – "instability"

Designed features of UNPAK' screening protocols	's allow addressing multiple questions abou when, where and how of novel phenot
Replication across experiments/environments	Which mutants have unusual plasticity elicited k macro-environmental factors?
Replication within experimen	ts Which mutants have extreme variance elicited k micro-environmental factors?
Multiple traits	Do deviant phenotypes – whether for means or variance – tend to be trait-specific, or in multipl traits? Which traits, if any, tend to be integrated
Ecotypes as phytometers	How does deviation of a mutant lines compare to differentiation observed across natural ecotype

SUMMARY OF METHODS

A standard set of traits is scored by undergraduates who are trained via review of training videos and slide presentations, and one-on-one with a technician or senior student. Data are subject to extensive error-checking and outliers validation against sources such as dried plant samples, original data sheets, and lab notebooks. Stocks are maintained to permit follow-up studies.

Five experiments completed at Barnard from 3/2013 to 4/2016

- Stocks re-grown from ABRC seed source, to minimize maternal environment and seed age effects
- Preferentially included KO lines that UNPAK has verified as single-inserts
- 122 new KO lines (6 reps) per experiment, alongside the standard 11 ecotype lines (12 reps)
- Complete-block randomization across 12 standard flats in 72-pot inserts
- ProMixBX medium, 2 Percival AR-36L2 growth chambers at 22.5°C, 16L/8D, bottom watered regularly

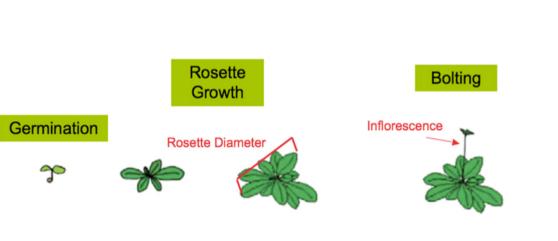
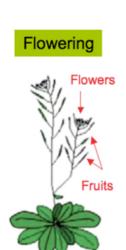
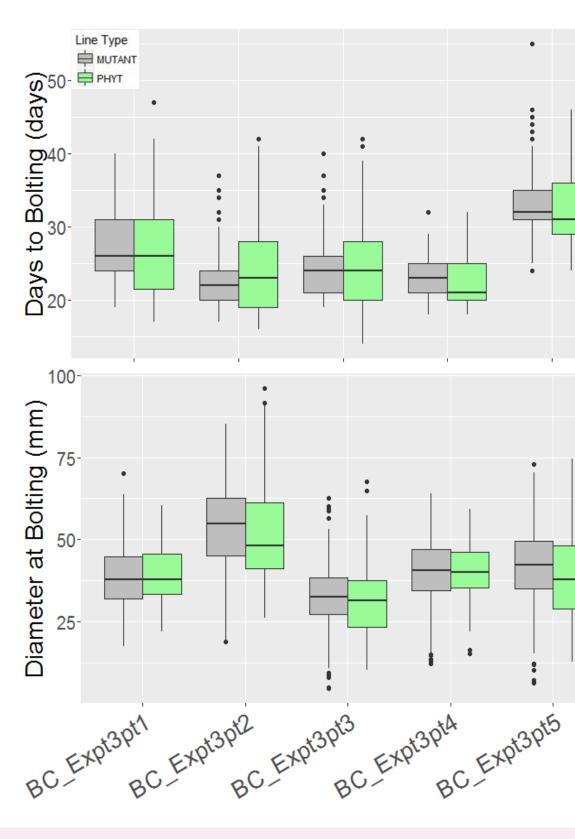
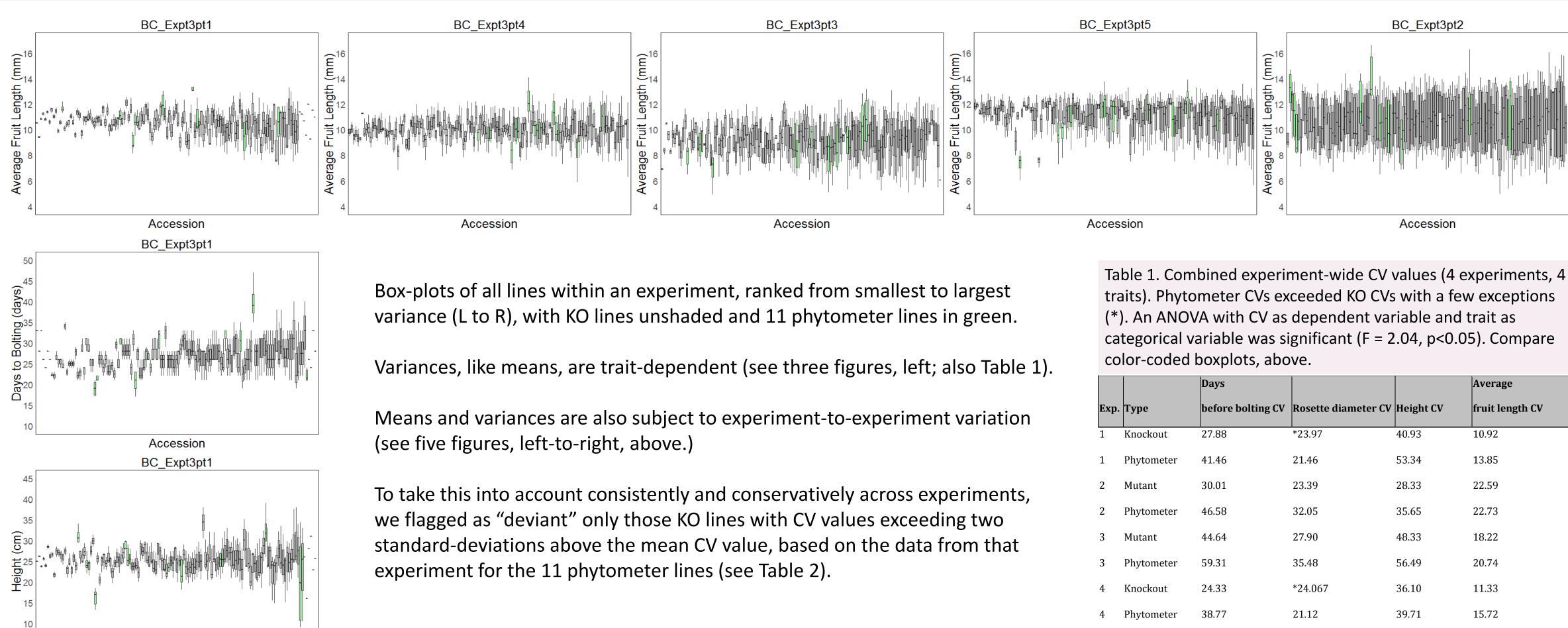



Photo by K. Hanslits


Amanda McLamb¹, Lumanola Gomezdelatorre Clavel¹, Amita Wanar¹, Clare Kohler^{1,2} ¹Barnard College, Columbia University; ²College of Charleston, ³Hampden-Sydney College

EXPERIMENTAL DESIGN, DATA ANALYSES, RESULTS


From KO mutant to phenotypic deviant: how UNPAK detects lines that have traits with an extreme mean or variance, relative to wild-type and to ecotypes

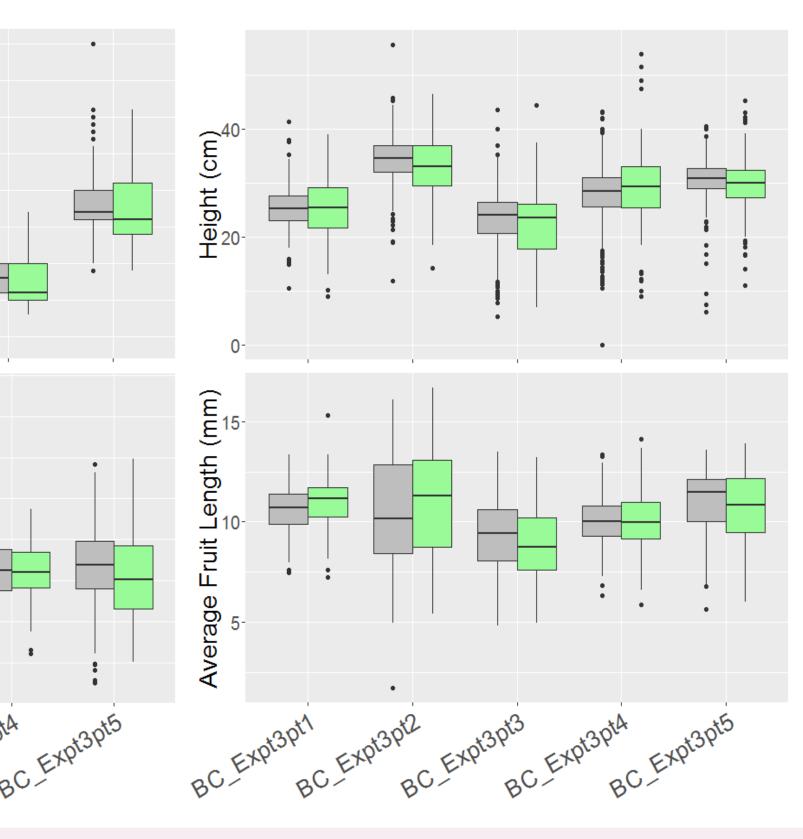
To date, five iteration of this experiment have been completed on Barnard's campus, phenotyping ~ 3500 individual plants for multiple traits. These plants represent ~600 SALK KO lines, all growing alongside wild-types and a standard set of ecotypes that served as "phytometers" that:

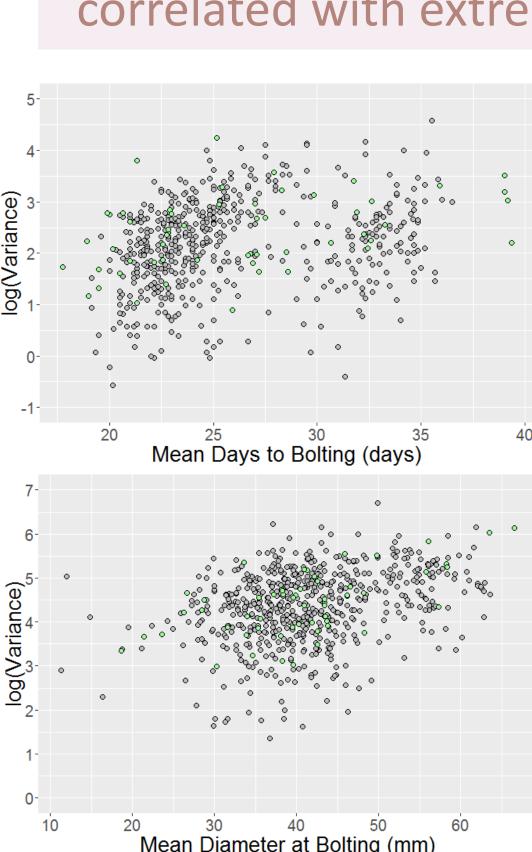
- match KO lines for trait means
- equal or exceed KO lines in trait variance
- gauge experiment-to-experiment variation
- are replicated 6-12 times per experiment, allowing estimation of line means and line variance; KO lines are similarly replicated

UNPAK's framework accounts for line means and line variances being trait-specific and sensitive to experiment-to-experiment variation

ACKNOWLEDGEMENTS

Accession


UNPAK: Plant genomics on the shoulders of undergraduates !!


More than 25 students from Barnard and CUNY's LaGuardia Community College have contributed to UNPAK's progress, including D. Cassidy, K. Cronin, L. Fletcher, L. Flynn, L. Gomezdelatorre Clavel, K. Hanslits, S. Kern, K. Lake, K. Lam, A. McLamb, J. Marrs, J. McCorkle, R. Nagpal, C. Nagy, M. Orozco, M. Pantalena, H. Peng, A. Sandoval, S. Schaeffer, M. Schwarz, J. Tan, N. Thulin, V. Varone, J. Wan, A. Wanar, G. Winship.

UNPAK's work has been supported by grants from the NSF's DOB-IOS Program, #13-54603 and #10-52323, a Barnard College Presidential Research Award, and Barnard College's Hughes Science Pipeline Project, unded by the Howard Hughes Medical Institute.

UNPAK Collaborating Investigators:

Hilary Callahan¹, April Bisner², Courtney Murren², Matthew Rutter² ¹Barnard College, Columbia University; ²College of Charleston, ³Hampden-Sydney College

		Days			Average
xp.	Туре	before bolting CV	Rosette diameter CV	Height CV	fruit length CV
	Knockout	27.88	*23.97	40.93	10.92
	Phytometer	41.46	21.46	53.34	13.85
	Mutant	30.01	23.39	28.33	22.59
	Phytometer	46.58	32.05	35.65	22.73
	Mutant	44.64	27.90	48.33	18.22
	Phytometer	59.31	35.48	56.49	20.74
•	Knockout	24.33	*24.067	36.10	11.33
	Phytometer	38.77	21.12	39.71	15.72

http://arabidopsisunpak.org/

Extreme variance values are not generally correlated with extreme mean values

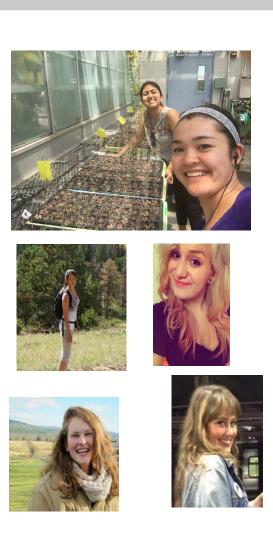

Variance values can be statistically problematic – non-normally distributed and scaling proportionally to mean values – making examination of these scatterplots a key step. Subsequently, as a standardized index of its "instability" or sensitivity to microenvironmental variation, we computed each KO line's Coefficients of Variation (CVs) for all traits.

Table 2. SALK KO mutants identified as potentially defective for genes regulating traits' developmental stability. Additional information obtained by cross-checking with TAIR and NCBI databases.

Average Fruit Length (mm)

Line Type

Accession #	CV (%)	Trait	Experiment	Chromosome	Protein expressed	Growth- related expression?
SALK_014463C	22.32968783	BD	1	5	CDC perl like family protein	Y
SALK_015982C	21.38541733	FA	1	2	Transmembrane protein	U
SALK_020074C	23.56370861	FA	1	4	Type 1 glutamine amidotransferase (GATase1) domain in Cytidine Triphosphate Synthetase	U
SALK_020112C	57.50691012	R	1	1	isopentenyltransferase 1	Y
*SALK_020801C	21.95342626	FA	1	2	mitogen-activated protein kinase 17	U
*SALK_020801C	49.81060538	Н	1	2	mitogen-activated protein kinase 17	U
*SALK_020801C	60.6491548	R	1	2	mitogen-activated protein kinase 17	U
SALK_020938C	58.9813291	Н	1	3	WVD2-like 1	Y
SALK_025774C	35.83866804	н	1	5	O-acyltransferase (WSD1-like) family protein	U
SALK_078808C	37.10560337	н	1	3	Octicosapeptide/Phox/Bem1p family protein	Y
SALK_103071C	26.5383951	FA	1	1	RING/FYVE/PHD zinc finger superfamily protein	Y
SALK_015471C	34.73527986	FA	2	4	high chlorophyll fluorescence 153 protein	U
SALK_027719C	45.45367265	R	2	4	cold shock domain protein 1	Y
SALK_044642C	42.06124369	R	2	5	Late embryogenesis abundant (LEA) protein-related	Y
SALK_045095C	38.45808634	FA	2	5	ion channel POLLUX-like protein, putative	U
SALK_045379C	48.77411989	FA	2	3	alpha/beta-Hydrolases superfamily protein	Y
SALK_045930C	50.46572172	R	2	4	COP1-interacting protein	U
SALK_066687C	34.46377413	FA	2	4	phospholipase D gamma 1	Y
SALK_116648C	108.30119	н	2	1	MAK16 protein-like protein	U
SALK_134114C	33.18288274	BD	2	2	Nucleotide-diphospho-sugar transferases superfamily protein	Y
SALK_134479C	110.7452647	н	2	3	NB-ARC domain-containing disease resistance protein	U
SALK_018122C	47.47217029	н	3	1	CLAVATA3/ESR-RELATED 9	U
**SALK_018558C	36.51378134	BD	3	3	Protein with RING/U-box and TRAF-like domains	Y
SALK_019119C	34.96101431	BD	3	4	Thioredoxin family protein	U
SALK_019163C	33.68805892	FA	3	3	protease Do-like protein, putative	Y
SALK_056441C	39.69353128	н	3	5	cytochrome P450 family protein, putative	U
SALK_079031C	40.43007664	н	3	2	ADP-ribosylation factor 3	Y
SALK_088702C	43.2603644	н	3	2	UDP-Glycosyltransferase superfamily protein	Y
SALK_100114C	56.62558141	н	3	1	metacaspase 5	U
Frait: BD (days to boltir Growth-Related Expres			(average fro	uit length), H (height)	

Come to Matt Rutter's talk, Tues @ 9:00 AM, Session 6B

Lessons from 200,000 Arabidopsis phenotypes: the power of UNPAK