One genotype, many phenotypes: **Testing hypothesized variability mutants in** *Arabidopsis thaliana* Rhea Nagpal, Jerica Tan, Hilary Callahan, Clare Kohler, Lu Gomezdelatorre, Amanda McLamb, Amita Wanar Callahan Laboratory, Department of Biology, Barnard College

Introduction

- Arabidopsis thaliana is a genomic model in the study of phenotypic variability and applied plant sciences
- The SALK Institute Genome Analysis Laboratory has a library of over 300,000 T-DNA insertion knockout mutants (covering about 67% of all genes)
- The unPAK (Undergraduate Phenotyping of Arabidopsis Knockouts) project studies these mutants, investigating:

Selecting Experimental Genotypes

	Accession	Trait	Variability	CV	Locus	Function
						Protein expressed in heterotrimeric G-protein complex and nucleus; functions in in
	SALK_001197C	Bolt Days	High	21.68	AT5G13840	protein binding, has signal transducter activity
						Protein expressed in Golgi apparatus, cytosol, cytosolic ribosome, nucleus, and
					AT5G13850	plasmodesma; involved in response to salt stress
					AT5G13845	Involved in translational elongation; has triplet codon-amino acid adaptor activity
	SALK_020283C	Bolt Days	High	23.02	AT5G18960	Protein expressed in nucleus; involved in response to red or far red light
	SALK_061516C	Bolt Days	High	20.64	AT4G30890	Protein expressed in nucleus; has thiol-dependent ubiquitin-specific protease activity
					AT4G30900	Protein expressed in nucleus and plasma membrane
						Protein expressed in Arp2/3 protein complex and cytoplasm; involved in actin
						filament-based processes, cell morphogenesis, multidimensional cell growth,
	SALK_003448C	Bolt Days	Low	4.44	AT3G27000	trichome; functions as structural constituent of cytoskeleton
nts						Protein expressed in cytoplasm, intracellular, nucleus, and plasma membrane; has
אור	SALK_062440C	Bolt Days	Low	4.47	AT1G71860	protein tyrosine phosphatase activity
<i>Jvv</i> ,						Protein expressed in extracellular region, involved in cellular calcium ion
im,		Delt Devie	Law	4 4 0		nomeostasis, response to light stimulus, has intracellular ligand-gated ion channel
igh 🛛	SALK_066558C	Bolt Days	LOW	4.19	A15G11180	
sility	SALK_020993C	Bolt Days	Average	15.86	AT1G18740	Protein expressed in chloroplasts
mity						Protein expressed in chloroplasts; involved in lysine biosynthetic process via
						diaminopimelate, response to cytokinin, systemic acquired resistance, salicylic acid
ed for	SALK_056546C	Bolt Days	Average	15.95	A14G33680	mediated signaling pathway; functions in copper ion binding
					AT4G33690	Protein expressed in chloroplasts
onal	SALK_013974C	Fruit Length	High	25.97	AT3G03160	Protein expressed in mitochrondria
Shai						Protein expressed in extracellular region, plasma membrane, functions in GTP
iment	SALK_019272C	Fruit Length	High	25.48	AT4G28950	binding
						Protein expressed in plasma membrane, chloroplasts, plasmodesma, and vacuole;
hand						involved in carbon dioxide transport, cellular water homeostasis, ion transmembrane
iseu	SALK_019794C	Fruit Length	High	26.19	AT2G45960	transport, response to salt stress
ation.						Protein expressed in nucleus and plasmodesmata; involved in chromatin assembly or
	SALK_020296C	Fruit Length	High	25.6	AT2G13370	disassembly, ATP binding, and DNA binding; has helicase activity
			1	F 40	AT4000700	Protein involved in translation, translational elongation; has the codon-amino acid
	SALK_010581C	Fruit Length	LOW	5.42	AT1G28790	Protoin involved in Involved in translation, translational elemention; has triplet coden-
					AT1G28780	amino acid adaptor activity
	SALK 020686C	Fruit Lenath	Low	4.74	AT3G52110	Protein expressed in nucleus
						Protein expressed in in chloroplast, endoplasmic reticulum, plasmodesma; involved
	SALK_065091C	Fruit Length	Low	4.63	AT5G58710	in protein folding, root development
	SALK_031510C	Fruit Length	Average	21.44	AT5G23920	Protein expressed in in mitochondrion, plasma membrane, and vacuole

- Fitness-related traits such as timing of reproduction and number of fruits
- How often and which mutations result in mutant phenotypes
- > The role of the environment in shaping phenotypes
- In this experiment, we re-examine SALK mutants with known unusual phenotypic variability.
 - For a single trait, replicated individuals of a given genotype may display variable phenotypes, despite having identical genotypes and experiencing the same macro-environment.
- Phenotypic variability is an essential and heritable feature of organisms
 - Genes and environment jointly influence the scope of variability
 - Variability itself may be subject to natural selection

10	Accession
igure - Part arianc nes ui reen.	1a: Box plot of all lines in Experiment 5 ranked from smallest to largest ce (L to R) of days to bolting, with KO hshaded and 11 phytometer lines in
16 14 12 10 10 10	
6	

* SALK_011196C, SALK_056651C, SALK_011196C, and SALK_053563C are not included as their chromosomal loci and functions have not yet been identified.

Table 1: SALK KO mutants used in the experiment and their respective trait-specific level of variability, CV, locus, and function at that locus (from The Arabidopsis Information Resource, TAIR).

Figure 2: Sample randomization

Methods

- We examine mutants with unusual variability for the timing of bolting and fruit length.
- In all unPAK experiments, SALK mutants are grown alongside and compared to wild-types and phytometers, different ecotypes of Arabidopsis designed to control for environmental variation between and within experiments.
- We quantify mutants' variability for traits using the coefficient of variation (CV) of each trait, comparing with CVs of wild-types and phytometers.
- Increased replication is being used to improve precision of CV estimation for these unstable mutants

KO lines unshaded and 11 phytometer lines

in green.

scheme of a single flat. Blue squares represent "fruit length" KOs, purple represent "days to bolting" KOs, and green represent phytometers (**C** represents Columbia

wildtypes).

Fruit Length
- Larger fruits indicates more seeds and
therefore greater reproductive fitness.

Plant Bolting - Earlier bolting day indicates greater fitness. Control of bolting date has agricultural implications, as farmers require the ability to adjust depending on georgrahical region and growing season.

Take-homes and Next Steps

The ways in which genes and the environment interact in creating variation are an area of active research with model organisms such as *Drosophila melanogaster* and *Caenorhabditis elegans*, making our analyses and experiments early steps in developing Arabidopsis as a research system in this field. Part of unPAK involves addressing the phenotypic effects of macroenvironmental factors (nutrient availability, water stress). Our research expands this focus to how more subtle microenvironmental factors (such as light differences between pots on the same flat) contribute to phenotypic variability. Although microenvironmental variation cannot be completely eliminated, we can distinguish variability with solely environmental sources from variability with heritable sources and associated candidate genes. We can then further characterize these genes. For example, genes coding for heat-shock proteins or proteins involved in proteostasis could result in increased variability if knocked out. In contrast, knocking out genes involved in amplifying environmental signals could result in less variable phenotypes. UnPAK's phenotyping strategy complements other methods such as genome-wide association studies that have also identified to such genes in other model systems.

> 18 replicates of 20 mutant genotypes were randomly assigned to locations in a 6-flat experiment. Each flat has have 3 replicates of each mutant alongside 12 phytometers.

Acknowledgements

We would like to thank our collaborators at twelve institutions, especially the College of Charleston, as well as the National Science Foundation for funding unPAK.